MICHAEL TRUELL

Lenny Rachitsky

—_— Michael Truell * Lenny's Podcast

Michael Truell - YGEXTEE

This is the complete bilingual transcript for Lenny's Podcast featuring Michael Truell, the co-founder and
CEO of Cursor (Anysphere).

[00:00:00] Michael Truell
English:

... our goal with Cursor is to invent a new type of programming, a very different way to build software. So
a world kind of after code, | think that more and more being an engineer will start to feel like being a logic
designer, and really, it will be about specifying your intent for how exactly you want everything to work.

FRCERIR:

------ A7 Cursor WERERA—MHENRELS T, —MEATENREBESLSN. BME—T B
AR, HiNN, IRMNASFEREEGERE—" “BEigitii” , EaOBETRmIREEE, BRE
JRAE—INIE 1,

[00:00:16] Lenny Rachitsky

English:

What is the most counter-intuitive thing you've learned so far about building Cursor?
FRCEIE:

FIEAINLE, EME Cursor WEREF, RFENERREZNEBERMA?

[00:00:20] Michael Truell
English:

We definitely didn't expect to be doing any of our own model development. And at this point, every

magic moment in Cursor involves a custom model in some way.
FROCERIR:

BIRYTLEME B S#TEMBE ERENF L, MIE, Cursor PE—1 “FBNZI” FEEMZE LES
NET BEXIEE,

[00:00:26] Lenny Rachitsky
English:
What's something that you wish you knew before you got into this role?

RSz ERIE:

FREXTMREZE, BtARFREECRERAER?

[00:00:29] Michael Truell

English:

Many people you hear hire too fast, | think we actually hired too slow to begin with.
FRCEE:

MEBRIRZARBAKRRT, BRIAABRITESMEELIBIEKXIET.

[00:00:35] Lenny Rachitsky
English:

You guys went from $0 to 100 million ARR in a year and a half, which is historic. Was there an inflection

point where things just started to really take off?
FEiE:

RIIE—FFNITEER ARR (FELZEMEWN) K OMEIT 112%7T, XREXFIFIN. XFEEEFT—
MR, L SHEIEFRET?

[00:00:43] Michael Truell
English:

The growth has been fairly just consistent on an exponential. And exponential to begin with feels fairly
slow when the numbers are really low, and it didn't really show off to the races to begin with.

FROCERIR:

BRES F-BEREERENERLASE. FEHREERNER, BHRREKEMNRIEBLEE, FRURNFSG
HEERM “—REL” B,

[00:00:51] Lenny Rachitsky

English:

What do you think is the secret to your success?
R EE:

RIANAIRIIR T MRZ A2

[00:00:53] Michael Truell
English:
I think it's been...

FROCERIR:

[00:00:55] Lenny Rachitsky
English:

Today, my guest is Michael Truell. Michael is co-founder and CEO of Anysphere, the company behind
Cursor. If you've been living under a rock and haven't heard of Cursor, it is the leading Al code editor, and
is at the very forefront of changing how engineers and product teams build software. It's also one of the
fastest growing products of all time, hitting 100 million ARR just 20 months after launching, and then 300
million ARR just two years since launch.

Michael's been working on Al for 10 years. He studied computer science and math at MIT, did Al research
at MIT and Google, and is a student of tech and business history. As you'll soon see, Michael thinks deeply
about where things are heading, and what the future of building software looks like. We chat about the
origin story of Cursor, his prediction of what happens after code, his biggest counter-intuitive lessons
from building Cursor, where he sees things going for software engineers, and so much more.

Michael does not do many podcasts. The only other podcast he's ever done is Lex Fridman, so it was a
true honor to have Michael on. If you enjoy this podcast, don't forget to subscribe and follow it in your
favorite podcasting app or YouTube. Also, if you become an annual subscriber of my newsletter, you get a
year free of Perplexity, Linear, Superhuman, Notion, and Granola. Check it out at lennysnewsletter.com,
and click bundle. With that, | bring you Michael Truell.

AR ERIE:

SRIEER Michael Truell, Michael Anysphere FIBE SB35 A 3 CEO, XRAQTH KT Cursor. WRIR
—BEHEHZE (living under arock) E&Iiiid Cursor, B2 BRI Al XBBARIESS, AT II2IHM
FaBEEERE AN RINE. EREEELREKSERN~=mZ—, L& 20 MA ARRFIEEI 1 2%
70, ELFERNAER 31257t ARR,

Michael T AIEL 10 T, MEMEBEIFR (MIT) EHENRFENEHE, & MIT # Google MZE Al
3, HERSEANEENARE. ENREIEEEIN, Michael WEYNARARURRENENARESE
RAMBE, FHATWET Cursor BFEHE. Myt “FABNA" BTN, #2 Cursor 2P HRRE RN
Il IEIEFREIRIMIRE, UKEZRE,

Michael R.UBINBE. ME—SMEHNS—MEER Lex Fridman, FrLAEEIEEI Michael EREABIRE, U
BMRERXMER, S THEEHANBENAS YouTube EiTIEMXE, o, MBREANENEEANEE
ITRE, MEBEREIKEB —EM Perplexity. Linear. Superhuman. Notion # Granola. &5 A
lennysnewsletter.com #F =& bundle &, TH, 1LFHNIXIE Michael Truell,

[00:02:14] Lenny Rachitsky (Sponsor Break - Eppo)
English:

This episode is brought to you by Eppo. Eppo is a next-generation A/B testing and feature management
platform built by alums of Airbnb and Snowflake for modern growth teams... [Full sponsor text omitted
for brevity in translation, focusing on the core content]

FRCERIR:

AETEHHH Eppo %81, Eppo ZH Airbnb 1 Snowflake B & A IAE K EBAITIER T —A A/B NIXFNIHEE
"SEA:EE:FEI\ (fmfﬁj]?g‘jmgmg)

[00:03:31] Lenny Rachitsky (Sponsor Break - Vanta)

English:

This episode is brought to you by Vanta. When it comes to ensuring your company has top-notch security
practices, things get complicated fast... [Full sponsor text omitted for brevity]

FRSCERIE:
AETEH Vanta 88, Y RIRERATHETNENLLIEN, SEARNFRTEB/EL-- (BBERAR)

[00:04:26] Lenny Rachitsky

English:

Michael, thank you so much for being here. Welcome to the podcast.
R EE:

Michael, FFERSIRAER. YOEREIAFER,

[00:04:30] Michael Truell

English:

Thank you. It's great to be here. Thank you for having me.
R EE:

g, RENREIXE, RIS,

[00:04:33] Lenny Rachitsky
English:

When we were chatting earlier, you had this really interesting phrase, this idea of what comes after code.
Talk about that, just the vision you have of where you think things are going in terms of moving from code
to maybe something else.

FRCERIR:

BTzagixey, RAT—MESEBIEIE, B ‘BB (what comes after code) BYARE. #i%
XANE, XFRIAAEYBINAEMRBEREMERINES,

[00:04:45] Michael Truell
English:

Our goal with Cursor is to invent sort of a new type of programming, a very different way to build
software, that's kind of just distilled down into you describing the intent to the computer for what you
want in the most concise way possible, and really distilled down to just defining how you think the
software should work, and how you think it should look. With the technology that we have today, and as
it matures, we think you can get to a place where you can invent a new method of building software that's
[inaudible 00:05:16] higher level, and more productive, in some cases, more accessible too.

And that process will be a gradual moving away from what building software looks like today. | want to

contrast it with maybe the vision of what software looks like in the future that | think... A couple of visions

that are in a popular consciousness that we at least have some disagreement with. One is, there's a group
of people who think that software building in the future is going to look very much like it does today,
which mostly means text editing, formal programming languages, like TypeScript, and Go, and C, and
Rust. And then there's another group that kind of thinks you're just going to type into a bot, and you're
going to ask it to build you something, and then you're going to ask it to change something about what
you're building, and it's kind of like this chatbot, Slackbot style where you're talking to your engineering
department.

And we think that there are problems with both of those visions. | think that on the chatbot style end of
things... And we think it's going to look weirder than both. The problem with the chatbot style end of
things is that lacks a lot of precision. If you want humans to have complete control over what the software
looks like, and how it works, you need to let them gesture at what they want to be changed in a form
factor that's more precise than just, "Change this about my app." In a text box, removed from the whole
thing. And then the version of the world where nothing changes we think is wrong, because we think the
technology is going to get much, much, much better.

And so a world after code, | think that it looks like a world where you have a representation of the logic of
your software that does look more like English, you have written down... You can imagine in [inaudible
00:07:08] form, you can imagine in kind of an evolution of programming language towards pseudocode.
You have written down the logic of the software, and you can edit that at a high level, and you can point
at that. And it won't be the impenetrable millions of lines of code, it'll instead be something that's much
Terser, and easier to understand, easier to navigate. But that world where the kind of crazy, hard to
understand symbols start to evolve towards something that's a little bit more human-readable, and
human-editable, is one that we're working towards.

AR ERIE:

FAFE Cursor WERE R PA—MHENRIES T, —FMEATERNRAEESLSN. EREUAMRUKEENTS
XA ETERMRNEE, BMREEMFA, HEERENEXIRANRERZNEEURNIZ KT A%, F
BIEMNIEREAR, BEEHKA, FMTARAUEEE—MESER. Ead. EREFRTHES LFH
IR 775

XN RZNES KO GHEER. REEES5BaARINMPN LA RRERBSBAITEL, il
IXLEBSIFAREL. —MMRINA, KRNWREWREERSMSKIEEZEM, FEXRBXAHE. EX
H4mIZES (W TypeScript, Go, C, Rust) s B—MIMRIAA, IRRFENENVEAITE, ILEEMRENRA,
BRI, TREWRNZZAL Slack M2 A—#E, (HEIREMRIIIEEIXHE,

HNMPAAZR T BREBE PR MAKMVAARKOFEFILEXRELLE 2R . DRVBARIRREE
FRZBEWE, MRFFEALNREMINENEEANAE 2RI, MEZILMIEES ULEXAAE
Bii—a “R— T App” BRI S TURIEPRBEE LIS . MAMIAN—IIHAZLENR R 2 HE
ZH, AARIMMBERASEREES,

FRLL, “IERES” BttsR, BANEBEREGE—MIBERAEZERANER, MXMREEEREGRR
B MM UBERER—MME “hfiE3” (pseudocode) EHAMRIZIES. FE5 FRHFRIZLE, JUESEXRL
HITHRENER. EABEIR/LEATHUESENNE, ME—LEEHE. ERER. E5SMNARE, BT
IR, MEENTSEERER RS, AIREETESR, ERKRIEHNER.

[00:07:36] Lenny Rachitsky
English:

This is a profound point. | want to make sure people don't miss what you're saying here, which is that
what you're envisioning in the next year essentially is kind of when things start to shift, is, people move

away from even seeing code, having to think in code in JavaScript and Python, and there's this
abstraction that will appear, essentially pseudocode, describing what the code should be doing more in
English sentences.

AR ERIE:

XE—NRZINVN R, HEHRAKKEEIMFEXERE, ERER, FRRERR—FEEG, FHEE
BARERT: MIABFEEEENRNE, TBFEM JavaScript 8 Python BiZEERE, MESHI—Fh
gE, ARERMNED, BAREQFRERENIZET 4.

[00:07:59] Michael Truell
English:

Yep. We think it ends up looking like that, and we're very opinionated that that path goes through existing
professional engineers, and it looks like this evolution away from code. And it definitely looks like the
human still being in the driver's seat, and the human having both a ton of control over all aspects of the
software and not giving that up. And then also the human having the ability to make changes very
quickly, having a fast duration loop and not just having something in the background that's super slow
and takes weeks, go do all your work for you.

AR ERIE:

Bl BITANRASTAAE, MARNREXFREZBINENZ L TRIMRKI, cBEREEMAR
B R, EENEREAXNAZREDN (in the driver's seat) , AXWNRENFABEHEHIBEE
ABEHFRNBFRZBFT. B, AXKEBIFEREUHHENR, AHERENEAER, MAZLESEMNER
18R RAATE L LA R BB RSTE A Tk

[00:08:33] Lenny Rachitsky
English:

This begs the question for people that are currently engineers, or thinking about becoming engineers, or
designers, or product manager, what skills do you think will be more and more valuable in this world of
what comes after code?

AR ERIE:

XELSIH T —Me@: W FIMENTIEN, SEBEATRE. i, FeSERAKR, X1 “FRE°
HRE, MERESTTEREENE?

[00:08:50] Michael Truell
English:

| think taste will be increasingly more valuable. And | think often when people think about tastes in the
realm of software, they think about visuals, or taste over smooth animations, and coloring things, Ul, UX,
et cetera on the visual design of things. And the visual side of things is an important part of defining a
piece of software, but then, as mentioned before, | think that the other half of defining a piece of software
is the logic of it, and how the thing works.

And we have amazing tools for specing out the visuals of things, and then when you get into the logic of
how a piece of software works, really, the best representation we have of that is code right now. You can
kind of gesture at it with Figma, and you can gesture at it with writing down notes, but it's when you have

an actual working prototype. And so | think that more and more, being an engineer will start to feel like
being a logic designer, and really, it will be about specifying your intent for how exactly you want
everything to work. It'd be more about the whats, and a little bit less about how exactly you're going to
do things under the hood.

| think taste will be increasingly important. | think one aspect of software engineering, and we're very far
from this right now, and there are lots of funny memes going around the internet about some of the trials
and tribulations people can run into if they trust Al for too many things that comes to engineering,
around building apps that have glaring deficiencies, and problems, and functionality issues. But | think
we will get to a place where you'll be able to be less careful as a software engineer, which, right now, is an
incredibly, incredibly important skill. We'll move a little bit from carefulness, and a little bit more towards
taste.

FRCERIR:

AR “@ix” (taste) BEFUKBEENE. BEIANRZRGTHAN MK, SEFNTHR. RZHIE
E. B, U/UXFERTIRITHE. AEHLEEXRENERED, BIENZAREN, EXRENS—F
TEMNIZE, BERNMIEIE.

BINELBTRENTARMUATNR, EHRRANTRGEENEEN, BRiRiENREREIAAM
253, fREILIA Figma @%E, WAIUEEREEARE, BERESFAE—NLRIBETHNRENA B i
MUIKINN, IRMsEkEs) “ZEgitin” , %OETRHBINEE, BMRIRFE—INMAEE. EFE
ZHXF “MH4” (what), MRDXFRERE “EAM” (how).

HANNBARZAREE. BRRHIEN— I AE—2ARMNAETERERE, M EBERSEBEROE, B
MRMEIR LI EEE A ZBRISHEYE, LIS App BRAZRRMEMINEERE. EFIANINRE
RE—MER, FARGIREIN, MAREGREXE ENMER , M ™E" ZEmER—IRAEEN
g, HAITEM 2" HiHsEmE “@miK” o

[00:10:40] Lenny Rachitsky
English:

This makes me think of vibe coding, is that kind of what you're describing when you talk about not having
to think about the details as much, and just kind of going with the flow?

AR ERIE:

XitEBET “FEHIE (vibe coding), HRKEIFTEZERAZSHET. INEBAN, BIEXMRERIILG?

[00:10:49] Michael Truell
English:

| think it's related. | think that vibe coding right now describes exactly this state of creation that is pretty
controversial, where you're generating a lot of coding, you aren't really understanding the details. That is
a state of creation that then has lots of problems, you don't really... By not understanding the details
under the hood right now, you then very quickly get to a place where you're kind of limited at a certain
point, where you create something that's big enough that you can't change. And so | think some of the
ideas that we're interested around, how do you give people continued control over all the details when
they don't really understand the code? | think that solutions there are very relevant to the people who are
vibe coding right now. | think that right now, we lack the ability to let the tastemakers actually have
complete control over the software. One of the issues also with vibe coding, and letting taste really shine

through from people is, you can create stuff, but a lot of it the Al making decisions that are unwieldy and
you don't have to control over.

AR ERIE:

BRUEREXK. BRIl “FREHRRE" WANES—MMASWNEIPRE: REMTAER, EHFEIERE
BT, MEPRSEHEREZRE, RAFERKREAT, (FRRMIBEIMIA, LLNHIRENERREX
B—ERREN, MMKEEHRET. MURIMNEXBN—EEE: SANFEERRALE, LI
SEERIFMEAT? NNAXEFRRLGENTFRERT “FEHRE" NARGFEEZEE, B, RIIERZIL
‘mRERE" AETEENRENED. [REREN—INRER, RAMELIEHLRA, BEHPRZRERZ
ARy, XEERRAIRERAE, MBMRTEES.

[00:11:56] Lenny Rachitsky
English:

One more question along these lines. You threw out this word taste. When you say taste, what are you
thinking?

FRCERIR:
KFRX—mBE—NEE RMRET “mk” XME. HRREImIRET, REMFHEHA?

[00:12:01] Michael Truell
English:

I'm thinking having the right idea for what should be built. It will become more and more about effortless
translation of, here's exactly what you want built, here's how you want everything to work, here's how
you want it to look. And then you'll be able to make that on a computer, and it will less be about this kind
of translation layer of, you and your team have a picture of what you'd want to build, and then you have
to really painstakingly, labor-intensive, lay out that into a format that a computer can then execute and
interpret. | think less than the Ul side of things, maybe taste is a little bit of a misnomer, but just about
having the right idea for what should be built.

AR ERIE:

BIENENT “WMZBEMHA” BERNERZE SREREXFTFNRERENEL: XMEMEERERN
A, XMZRARECEFENAN, IMERFEEEERNEFTF. ARMRETHENLILIAE, ERFE
AT BHEDRIZLE —BEMRNBENRFEE N EE, ARBARROT. BEAEFTHRHEZLN
HENARITNERNEN. BT UIAE, B1F ‘B XMIRTeER, BeROmEXTx ZEft
47 BIEMRIFINT,

[00:12:39] Lenny Rachitsky
English:

Awesome. Okay. | want to come back to these topics, but | want to actually zoom us back out to the
beginnings of Cursor. | have never heard the origin story, | don't think many people know how this whole
thing started. Basically you guys are building one of the fastest growing products in the history of the
world, it's changing the way people build products, it's changing careers, professions, it's changing so
much. How did it all begin? Any memorable moments along the journey of the early days?

FROCERIR:

KiET . 89, FEEREEXEER, EIMERBLRLAIEIZE Cursor BUEER. HMKRITIENERHE,
FERZAMFNEX—IZEAFIEN. E4L, RIJEAWEER LB KERO~mz—, EEESRZA
MaErrmi AN, RERLMEL, RETREHRB. X—TBEAFHEN? RHMEE ARSI Z
ng5?

[00:13:05] Michael Truell
English:

Cursor kind of started as a solution search of a problem, and a little bit where it very much came from
reflecting on how Al was going to get better over the course of the next 10 years. There were kind of two
defining moments, one was being really excited by using the first beta version of Code Pilot, actually. This
was the first time we had used an Al product that was really, really, really useful, and was actually just
useful at all, and wasn't just a vaporware kind of demo thing.

And in addition to being the first Al product that we'd use that was useful, Code Pilot was also one of the
most useful, if not the most useful dev tool we'd ever adopted, and that got us really excited. Another
moment that got us really excited was the series of scaling on papers coming out of OpenAl and other
places that showed that even if we had no new ideas, Al was going to get better and better just by pulling
on simple levers, like scaling up the models, and also scaling up the data that was going into the models.

And so at the end of 2021, beginning of 2022, this got us excited about how Al products were now
possible, this technology was going to mature into the future. And it felt like when we looked around,
there were lots of people talking about making models, and it felt like people weren't really picking an
area of knowledge work and thinking about what it was going to look like as Al got better and better. And
that set us on the path to an idea generation exercise, it was like, "How are these areas of knowledge
work going to change in the future as this tech gets more mature? What is the end state of the work going
to look like? How are the tools that we use to do that work going to change? How are the models going to
need to get better to support changes in the work? And once scaling and pre-training ran out, how are you
going to keep pushing for technological capabilities?"

And the misstep at the beginning of Cursor is we actually worked on... We sort of did this whole grand
exercise, and we decided to work on an area of knowledge work that we thought would be relatively
uncompetitive, and sleepy, and boring, and no one would be looking at it, because we thought, "Oh,
coding's great, coding's totally going to change with this Al, but people are already doing that." So there
was a period of four months to begin with, where we were actually working on a very different idea,
which was helping to automate and augment mechanical engineering, and building tools for mechanical
engineers.

There were problems from the get-go in that. Me and my co-founders, we weren't mechanical engineers.
We had friends who were mechanical engineers, but we were very much unfamiliar with the field. So
there was a little bit of a blind man and the elephant problem from the get-go. There were problems
around, how would you actually take the models that exist to today and make them useful for mechanical
engineering? The way we netted out is, you need to actually develop your own models from the get-go.
And the way we did that was tricky, and there's not a lot of data on the internet of 3D models of different
tools and parts, and the steps that | expect to build up to those 3D models, and then getting them from
the sources that have them is also a tricky process too.

But eventually what happened was, we came to our senses, we realized we're not super excited about
mechanical engineering, it's not the thing we want to dedicate our lives to. And we looked around, and in
the area of programming, it felt like despite a decent amount of time ensuing, not much has changed,
and it felt like the people that were working on the space maybe had a disconnect with us, and it felt like

they weren't being sufficiently ambitious about where everything was going to go in the future, and how
all of software creation was going to blow through these models. And that's what set us off on the path to
building Cursor.

AR ERIE:

Cursor WIEEB RER “NRBIHLBALE" , BRREELRERTHRE 10 F A FNALARIRE. BHFD
KRzl —=HANE—RMERA GitHub Copilot BUMIXARITZEIEE ME. BERNFREREIEE. HIE
FEBEBBAI @, MAUEB—TERER (vaporware) HIET

BRTERFE—TFAN A @I, Copilot BERITXAIHRER WRFTEREANIE) WALXIAZ
—, XILENEBXNE. F—MILBEITEENZIZ OpenAl FNMEAHBHN—RTIXTF “MEEN” (scaling
laws) BYILIL, XEEEERRR, BMERANNEEMEE, REBEIE R — L KRB IEFIE NLLE
£, Al maTEHRELT.

FRUATE 2021 SRR, 2022 &4, XiLFAVFIRE Al @Il TR A AERY, XBURARKRRIERMA. LA
PR, RIMEZATKICHRE, BT EEARERE—TAIRTIEME, ABEME Al Z58, AN
LA, XFARBRTHNBKMNE: BEERARHR, XEAIRTFMEAREZNARNL? TIFRILRR
SEMA? BVERNIASWNANRE? REFENMRERZFXETN? SGIRECMTNFEZIRRE,
SRR LI RN T AN BEST?

Cursor RHI—1MRKRIRZ, BIMITX—RINAANEER, REERZ—MHIPANENEERS. ANA
TWERIR TR, EARMNRERF: “WERE, AlBERNERRE, EEEBEAEMT.” FIU&ENEED
BrEdiE], HMELEBR— T2 FRVEE: BEWIM I B EEeE, MM IRmeET A,

M—FEmMBRZEH, FMZOKEGRABFTENMIED. BAFMNBIMIREMAR, BRI
TUHAFERRE. FRIU—FFEmEM “BARR” NRE. 2E—NREE, RNALIRENRENIMIES
A? BAINEIERE, RETMEARXE SRR, BXRKF, EENLEEZ VDX TAREIAEMZAHI 3D &
BifgiE, RBEWEXERUAMFNTRIE, MAIBEXERERNRRRINEEIFE EX,

B, FNBFETIR, TIRBFNUMIEHLEBARAE, XFERINTEFM—ERF L, Ffl]
WIME, AMAEREZTE, REMERT, EHREREAREN. BEEX N TR IIERNARTGRS KR
™Y, WIINRRNEERDERBEOZE, KEIRFIFMERNNRA IR ETXERESLI, XmERITE
E#9%2 Cursor Z ERAIZ2H,

[00:17:04] Lenny Rachitsky
English:

Okay. So interesting. Okay, so first of all, | love that... This is advice that you often hear of go after a boring
industry because no one's going to be there, and there's opportunity. And sometimes it works, but | love
that in this journey, it's like, "No, actually, go after the hottest, most popular space, Al coding, app
building." And it worked out. And the way you phrased it just now is, you didn't see enough ambition
potentially, that you thought there was more to be done. So it feels like that's an interesting lesson. Even
if something looks like, "Okay, it's too late, there's GitHub, Code Pilot's out there." Some other products.
If you notice that they're just not as ambitious as they could be, or as you are, or you see almost a flaw in
their approach, that there's still a big opportunity. Does that resonate?

RS ERIF:

XEEET, Bk, BEERX—£- - AMIERINBNEEIH—ITWHTL, RABEEA, B
2, ARNXBEEN, BREXNFIIXBREFNRE: ‘PR, EfEE, ZERSHIT. REWDAYFIR
Al RIEFMNBWE.” MERNT. RRNANIRER, FRESNENS5ETRERNBHOIT, RANTEEESZ

FREALUE. XIMNFR2—TEBEI: BMERNTURERER "BLXBT, BLHA GitHub Copilot 77 , Wl
RIFRMBNFBEEFC, NERERT MFERERKE, BENAGEARINZ. RIARGD?

[00:17:46] Michael Truell
English:

That totally resonates. A part of it is, you need there to be leapfrogs that can happen, you need there to be
things that you can do. And I think the exciting thing about Al is, in a bunch of places, and | think this is
very much still true of our space, and can talk about how we think about that and how we deal with that,
but | think that just the ceiling is really high. And yes, if you look around, probably even if you take the
best tool, any of these fields, there should be a lot more that needs to be done over the next few years.
Having that space, having that high ceiling, | think is unique amongst areas of software, at least the
degree to which it is high with Al.

FROCERIR:

T2INE. BARAET, MEBFERN “BULRE" AN, FEAEMEMBIER. FIANWAILAX
WHSET, ERZTE FIAARKNTEEKANL) , RERENFEES. 289, MRFFHETE, BIfE
EREFNTIAR, ERRVFEEEAEIFEN. HEXMTENRSHXRTR, FTNANERGETERZIR—T
—HY, EDAIFRNSERRIPIRER.

[00:18:30] Lenny Rachitsky
English:

Let's come back to the IDE questions. So there's a few routes you could have taken, and other companies
are doing different routes. So there's building an IDE for engineers to work within and adding Al magic to
it, there's another route of just a full Al agentic dev product, and then there's just a model that is very
good at coding, and focusing on building the best possible coding model. What made you decide and see
that the IDE path was the best route?

AR ERIE:

IEIRAIEER) IDE (SERFRIFER) MEE. (RIATLUEFRENRL, HMARBAERHARNER. i
A TIZIMIE— IDE HMN Al BE%; HEES AIZEER (agentic) ARFmIRE; BHERM—1IERE
BREENRE, TIEITHERIFNRFERE, BHALIRREHIATE IDE RIEEREERE?

[00:18:54] Michael Truell
English:

The folks who were from the get-go working on just a model were working on end-to-end automation
programming. | think they were trying to build something very different from us, which is, we care about
giving humans control over all of the decisions in the end tool that they're building. And | think those
folks were very much thinking of a future where end-to-end, the whole thing is done by Al, and maybe the
Al is making all the decisions too. And so, one, there was a personal interest component. Two, | think that
always, we've tried to be intense realists about where the technology is today, very, very, very excited
about how Al is going to mature over the course of many decades. But | think that sometimes people...
There's an instinct to see Al do magical things in one area, and then kind of anthropomorphize these
models, and think it's better than a smart person here, and so it must be better than a smart person
there.

But these things have massive issues, and we... From the very start, our product development process
was really about dogfooding, and using the tool intensely every day. And we never wanted to ship
anything that wasn't useful to us, and we had the benefit of doing that because we were the end users
part of our product. And | think that that instills a realism in you around where the tech is right now, and
so that definitely made us think that we need the humans to be in the driver's seat, the Al cannot do
everything. We're also interested in giving humans that control too for personal reasons, and so that gets
you away from just your model company that also gets you away from just this end-end stuff without the

human having control.

And then the way you get to an IDE versus maybe a plug-in to an existing coding environment is the belief
that programming is going to flow through these models, and the active programming is going to change
a lot over the course of the next few years. And that the extensibility that existing coding environments
have is so, so, so limited, so if you think that the Uls may change a lot, if you think that the form factor
programming is going to change a lot, necessarily need to have control over the entire application.

FROCERIR:

BEM—FEMIMIERI A, BEMIRZIHRIBIHRIZ. BIANMITEMBRAEMEINFERE. &i1X
DRI ILEA AR RAE T ARRERERIIZFIN. MARLE AR —PARR, BNiREm—IEHE Al 5
Ak, BEERRME AlFIE,

FREL, 88—, BPAMBRMS. £=, HUNAFRN—BEXEXNSFINEAKPRERENRLEN, BATK
{1133 Al FERR L+ EFRIAREIFFE IFENE. ERESERANZE—MELE, BE A EENURE T #5
BE, MAGEREARL, BSEAEXELIAAR, RAEMt—ELEERRAE,
EXERVEEEANRE. M—F1E, HMNO~RALIEREXT “1ZESHAR" (dogfooding), 88X
BREFEAXTTR, HIIMFNELHEANESEANAA, RMNEXMMME, BAFKNESMETmEVE
IR, XILIRWERANIRE —MIELR, FAXEITIEHNTANTEALZREEMN, Al FEED—T,
HFMARE, BITEFEWF ALZFHEFIN, XiLRZE T RGNERAT, WInE T AMEE ALIEH
YR E iR B B K.

ET Nt 4R IDEMABUERIENS, BRRARIMNBEREREIXERE R, BETHERR/LE
SREERZE N, MERBFBRHAYT BRIEFEER, NRMANUIZREER, MRMFUAFRENTEAZEL
£EZ, MO RAEEENNARER.

[00:21:04] Lenny Rachitsky
English:

| know that you guys today have an IDE, and that's probably the bias you have of this is maybe where the
future is heading, but I'm just curious, do you think a big part of the future is also going to be Al engineers
that are just sitting in Slack and just doing things for you? Is that something that fits into Cursor one day?

AR ERIE:

FADLERIEMEYZE IDE, XPJRERIMIMARERBIRL, EHRREFE, REDIAARENRA—EO B
AL “47% Slack B” ARFIER Al TIZIH? XIERRKRFE—KERA Cursor 15?

[00:21:20] Michael Truell
English:

| think you'll want the ability to move between all of these things fairly effortlessly, and sometimes | think
you will want to have the thing kind of go spin off on its own for a while, and then | think you'll want the

ability to pull in the Al's work, and then work with it very, very, very quickly, and then maybe have it go
spin off again. And so these kind of background versus foreground form factors, I think you want that all
to work well in one place. And | think the background stuff, there's a segment of programming that it's
especially useful for, which is type of programming tasks where it's very easy to specify exactly what you
want without much description, and exactly what correctness looks like without much description.

Bug fixes are a great example of that, but it's definitely not all of programming. So | think that what the
IDE is will totally change over time, and our approach to having our own editor was premised on, it's
going to have to evolve over time. And | think that that will both include, you can spin off things from
different surface areas like Slack, or your issue tracker, or whatever it is, and | think that will also include
the pane of glass that you're staring at is going to change a lot. We just mostly think of an IDE as the place

where you are building software.

FRCERIR:

HINNMPEFLERBEARMMAEXER R Z BT, BRRFEL A BE2ER—5)1L, ARIMREE AR
ZEOk, FEFREMWOIEE, AEBILEHENR, AUXM “FE” 5 “G18” (R, BRUAGREE(]E
— MG HRERLIE. EERANREERERTRENER, WNPLRAZHEATR. BREZEXERMENE

o

f8E Bug miE— MRIFHAGIF, EXENFERENEE. FrLAFKINN IDE BIEX ZFERTEIAIREAEE, iR
HYECRESMERET "EUOTAEENL” AR, XEEEIEIRAILUM Slack SRS RERSRSFAERER

hEss, WEIEMRITERARR “WIRER (4iERFE) SAERKTN. HINRZE IDE EIRIRERMHRY
H75o

[00:22:38] Lenny Rachitsky

English:

| think something people don't talk enough about with talking about agents and all these Al engineers
that are going to be doing all this stuff for you, is basically we're all becoming engineering managers, with
a lot of reports that are just not that smart, and you have to do a lot of reviewing, and approving, and
specifying. | guess thoughts on that, and is there anything you could do to make that easier? Because that
sounds really hard. Anyone that has had a large team, being like, "Oh my god, all these junior people just

checking in with me doing not high quality work over and over." It's just like, "What a life. It's going to
suck.”

FROCERIR:

S ANERICE REIARN Al TR, B—RRFAB: NEERNMEMT TIREE, HE BT KIRH
BTRE, MO AENEE. HEMBRIESHIE. MMLEAR? B ANERILIXZRFERZS?
NEITERRFT, ERAFTIREARNARZRES: “XWB, FAEXENREARFHRRIOCHRKR, ~HOIER
BB, XMEEBRERIERT .

[00:23:11] Michael Truell

English:

Yeah. Maybe you [inaudible 00:23:12] one-on-ones with [inaudible 00:23:15].
R EE:

=W, WIFRERRENF—N—=I (1-on-1s).

[00:23:15] Lenny Rachitsky
English:
So many one-on-ones.

S EE:
AR —H—2W

[00:23:17] Michael Truell
English:

Yeah. So the customers we've seen have most success with Al | think are still fairly conservative about
some of the ways in which they use this stuff. And so | do think today, the most successful customers
really lean on things like our next edit prediction, where your coding is normal, and making the next into
actions you're going to do. And then they also really lean on scoping down the stuff that you're going to
hand off to the bot, and for a fixed percent of your time spent reviewing code, from an agent, or from an
Al overall, you could... There's two patterns. One is, you could spend a bunch of time specifying things up
front, the Al goes and works, and then you then go and review the Al's work, and then you're done. That's
the whole task.

Or you can really chop things up. So you can specify a little bit, Al writes something, review, specify a little
bit, Al writes something, review. Autocompletes all in the way of that spectrum. And still we see often the
most successful people using these tools are chopping things up right now, and keeping things fairly
[inaudible 00:24:28].

FRCERIR:

T, JMNBIILER Al ZRRINER, EREEAS N LESEZELSRTH. FIANBRIRMIIHEF
FERRFENN “T—REEFN” (next edit prediction) , BMRIEEHRED, EIUNIRE TREENE. R,
It IFE B KA e BANES TR,

KTFEHE A SHERANIEE, BRMIEL: —%*%TT?Ejt%EﬁfEﬂ?ﬁﬁ'ﬁiﬁﬁﬁ, Al £F7E, ?*F1TE]§E$§E

MEEMR, F54R. Z—HEBESUFRE: HH—xRR, AAIT—RKR, fEE—T; BiiA—RKR
AIBE—RR. Bt TFXMNGEN—im. KL, BRmMRBAESEBIEESTE, 1%?%%‘&.5’9
=,

[00:24:27] Lenny Rachitsky
English:

That sounds less terrible. I'm glad there's a solution here. | want to go back to you guys building Cursor
for the first time. What was the point where you realized this is ready? What was a moment of, "Okay, |
think this is time to put it out there, and see what happens"?

AR ERIE:

XTI ALERE T o

REXEBRAE. FREEZIRIIE—XEE Cursor BB R, HARMERIRFIREIEE
| T? BB GFIE, R

EREECHERUREERREFTA" NNZIZHARER?

R
=]
8
=

[00:24:41] Michael Truell
English:

So when we started building Cursor, we were fairly paranoid about spinning for a while, without releasing
to the world. And so to begin with too, we actually... The first version of Cursor was hand-rolled. Now we
use VS Code as a base, like many browsers use Chromium as a base, and hit foot off of that. To begin with,
we didn't, and built the prototype of Cursor from scratch, and that involved a lot of work. We had to build
our own... There were a lot of things that go into a modern code editor, including support for many
different languages, and navigation support for moving amongst the language, error tracking support for
things. There's things like an integrated command line, the ability to use remote servers, the ability to
connect to remote servers to view and run code. And so we kind of just went on this blitz of building
things incredibly quickly, building our own editor from scratch, and then also the Al components.

It was after maybe five weeks that we were living on the editor full-time, and had thrown away our
previous editor, and we're using a new one. And then once it got to a point where we found it a bit useful,
then we put it in other people's hands, and had this very short beta period. And then we launched it out
to the world within a couple of months from the first line of code, | think it was probably three months.
And it was definitely a, "Let's just get this out to people and build in public quickly." The thing that took
us by surprise is we thought we would be building for a couple hundred people for a long time. And from
the get-go, there was an immediate rush of interest, and a lot of feedback too. That was super helpful, we
learned from that. That's actually why we switched to being based off of VS Code instead of just this
hand-rolled thing. A lot of that was motivated by the initial user feedback, and then had been iterating in
public from there.

FROCERIR:

HEATF M Cursor BY, FNTEBE LA TEFRAMA L. FRA—FE, Cursor WE—MRABAFE
B9, IMTEFATLL VS Code JERY, KRS EELL Chromium AEM—, ERFARITESMNSTFANE
Cursor REH), HRAETIE, BV AMWEB S MRAKBREESCIREARA: ZBESHHF. B
BINSAMZE. BIRBESE. FEERGLT. ERTERSENEEND. BETERSSREEMNETREN
BES1. BNNENMEGNBE—, RETRMEE—YT), NSHGBMHHRERS, T8 Al A4,

ARAOEAR, BN RIIXNMRES LTET, PHET ZRMERES, FHRERXMN. —BE T3
RSEERANIE, RMNMBERIIAFE, EH7T—MEBENNIXHE. METE-TRBIRSKE
B, ABRBT=1A. BEMNEZ—i “TELELANA, REERXAGHEWE" BIOE. ILHNZIREY
B, BNEUAZERK—ENERAIANIEDARS. EN—FFE, MERSBAER, RIFERSZ, X
FEEER, HNFRTRSZ, XKNFFLEBEAFARNGEHREAET VS Code MARULEAA N FENR
7, RAEE LERVIBAF RIGHER, ARRITM—EEAFER.

[00:26:44] Lenny Rachitsky
English:

| like how you understated the traction that you got. | think you guys went from $0 to 100 million ARR in a
year, year and a half or something like that, which is historic. What do you think was the key to success of
something like this? You just talked about dogfooding being a big part of it. You built it in three months,
that's insane. What do you think is the secret to your success?

AR ERIE:

HRREVMAXMERA SRR RGN RINE—FH—FFEARNEIEM 018 KE 112558 ARR, X2
SEIFREY, TRIANRIIBNRBREMTA? MAUARE “IZB SRR B REEN—HD. MINE=TARME
BEHKT, XXRIET. RIAIRIHBMIRETA?

[00:27:12] Michael Truell

English:

The three-month version wasn't very good, and so | think it's been a sustained paranoia about, there are
all of these ways in which this thing could get better. The end goal is really to invent a very new form of
programming that involves automating a lot of coding, as we know today. And no matter where we are
with Cursor, it feels like we're very, very far away from that end goal, there's always a lot to do. A lot of it
hasn't been over rotated on that initial push, but instead is the continued evolution of the tool, and just
making the tool consistently better.

FROCERIR:

= BRI ARAESIH R FRAEOIANBIIB R BE T —MIFEENRE (parancia), BREXNKRA
EHRZSAUSENM TG, HNNERBEIRRRA—TEMBRIETIN, KIS RATARTFZ4RED TIE
BEpfte FTit Cursor MELREIMTARRE, BREBBMRRETEFEEZ, SRERSEFEM. MR
AR—EARETRABIAR], METTRSSREH, UL ETFHRELT,

[00:27:47] Lenny Rachitsky

English:

Was there an inflection point after those three months where things just started to really take off?
R EE:

TEW=1BzE, BEE—MEITR, L—YEEAFRETY?

[00:27:51] Michael Truell
English:

To be honest, it felt fairly slow to begin with, and maybe it comes from some impatience on our part. |
think there's the overall speed of the growth which continues to take us by surprise. | think one of the
things that has been most surprising too is that the growth has been fairly just consistent on an
exponential, of just consistent month-over-month growth, accelerated at times by launches on our part
and other things. But an exponential to begin with feels fairly slow and the numbers are really low, and so
it didn't really feel off to the races to begin with.

AR ERIE:

ELY, EVREAIEE, BIFRRARIMNERRZMO. BABRKERKEE—HILHNRIIRG, BR<
ANFRFHNRZ, XMERKEIFERENERRIEK, AE—AMREEK, BREFEANBRINO~mAHHEME
RMMNE, BEFIEMER, SEMIRNE, ERREREERIE, FAUNFRHLSERM BT BB,

[00:28:32] Lenny Rachitsky
English:

To me this sounds like build it and they will come actually working. You guys just built an awesome
product that you loved yourselves as engineers, you put it out, people just loved it, told everyone about
it.

AR ERIE:

ERIR, XFpERE “REMSEFK, MIMEK WEXER. (RMIFAIREN, SHT7T-—1TECSARENE
%M, #ramE, AMEIEEER, #AEEES.

[00:28:42] Michael Truell
English:

It being essentially all just us, the team working on the product, and making the product good in lieu of
other things one could spend one's time on. We definitely spent time on tons of other things, for instance,
building the team was incredibly important, and doing things like support rotations are very important.
But some of the normal things that people would maybe reach for in building the company early on, we
really let those fires burn for a long time, especially when it came to things like sales and marketing.

And so just working on the product, and building a product that you like first, your team likes, and then
also then adjusting it for some set of users, that can kind of sound simple, but then, as you know, it's hard
to do that well. And there are a bunch of different directions one could have run in, a bunch of different
product directions.

| think focus, and strategically picking the right things to build, and prioritizing effectively is tricky. | think
another thing that's tricky about this domain is, it's kind of a new form of product building, where it's
very interdisciplinary in that we are something in between a normal software company and then a
foundation model company, in that we're developing a product for millions of people, and that side of
things has to be excellent, but then also one important dimension of product quality is doing more and
more on the science, and doing more and more on the model side of things in places where it makes
sense. And so that element of things doing that well too has been tricky. The overall thing would note is
maybe some of these things sound simple to specify, but doing them well is hard, and they're a lot of

different way you can runin.
R EIE:

BEAEMERMNBMENES O0RAEFRE, B niiy, mMARENEEAEREMER L. SATNEET
RENEEEMERB L, WNAREMEEEE, HERLENBRER, E—EATELILAIHHES S AME
=6, HMNAEKILE] “BEAX TRA, LHEHENHZEH.

FREL, RINBEETFm, M—MrESER. ANNERN™m, ARRIERFBFEHITER, XITEFRRE
B, BAfRFRR], EMFR%E. BREFENHSEAILUE, REFEN~mEER,

HIANTE. SREMERERORASINE, HARMRENTRASIFERFN. XMURNE — I ERE
F, eER—MHENTRAERN, FREFER. RN TEERGQBNEMBER QT ZE: HRINAMER
AF &, XAESIMEISHE; BEFN, FaREN—1E2EEEERFRRMRRE IR R NERES,
ZEXR S EEBHFIFERE. SRR, BEFEHEREKRER, EMERRE, MEBARSTINI.

[00:30:30] Lenny Rachitsky (Sponsor Break - OneSchema)
English:
I'm excited to have Andrew Luo joining us today. Andrew is CEO of OneSchema... [Sponsor text omitted]

FRCERIR:

REMS X Andrew Luo TIAFATo Andrew 2 OneSchema By CEQ:--+ (BEhEARER)

[00:32:05] Lenny Rachitsky
English:

What is the most counterintuitive thing you've learned so far about building Cursor, building Al products?

FRSCERIE:
FEMEE Cursor 1 Al == RS2, MMEINERETENEBEIRMHA?

[00:32:11] Michael Truell
English:

| think one thing that's been counterintuitive for us, [inaudible 00:32:14] added a little bit before, but is,
we definitely didn't expect to be doing any of our own model development when we started. As
mentioned, when we got into this, there were companies that were immediately from the get-go going
and just focusing on training model from scratch. And we had done the calculation for what it to train
before, and just knew that that was not [inaudible 00:32:36] going to be able to do. And also felt a bit like
focusing one's attention in the wrong area, because there were lots of amazing models out there, and
why develop all this work to replicate what other players had done. Especially on the pre-training side of
things, taking a neural network that knows nothing, and then teaching it the whole internet.

And so we thought we weren't going to be doing that at all, and it seems clear to us from the start that the
existing models, there were lots of things that they could be doing for us that they weren't doing, because
there wasn't the right tool built for them. In fact though, we do a ton of model development, and
internally, it's a big focus for us on the hiring front, and have assembled a fantastic team there.

And it's also been a big win on the product quality side of things for us. And at this point, every magic
moment in Cursor involves a custom model in some way. So that was definitely counterintuitive, and
surprising, and it's been a gradual thing, where there was an initial use case for training our own model,
where it really didn't make sense to use any of the biggest foundation models. That was incredibly
successful, moved to another use case that worked really well, and had been going from there. And one of
the helpful things in doing this sort of model development is picking your spots carefully, not trying to
reinvent the wheel, not trying to focus on places, and maybe where the best foundation models are

excellent, but instead kind of focusing on their weaknesses, and how you can complement them.
R EIE:

FIAN/ENRRER BTN —RE — R ZAEMEL —HNNF SRR T2 TEMEME TEEA L.
IE0FRR, SHEATEANXDIURET, BEATME-—RERZTETMNEFEINGFEE, HNELING%RZ,
EIRAZIAEHB. MAREPERKETER, RAMEELERERENRET, MTABEESK T
EEFRANIIENR? LEEFIGAE, L——TAEHEMEEF IR B,

FRARMNEUATEARASMX—R, HA—FIRRET, NEREERSENRNMNFEIRELE, R2EAN
ERANENHREGENTR, BELL, HMNAEBTRENEEA L. ERE, XERIHEBHN—KE
=, HIMBART —2ZZXIHR.

XA mRERFBEEANMF], BEi, Cursor FHE— “GENZ)” EEMZE LESRETH
EXRE, XEWNERETELANFTN. XB—TMREFHHNERE: KO- TAM, FRAXREEMRE:
EFXYNE, FRENIET BCRE, SRFEFMT, BERNXNAETS—TAF, MRBRIF, mX
BRRT TR, MXMERALN—ITENIR “FEER" , FTEREERLKPRF, F1EAEMEREEZM
SRIFpMSED, METETENNSER, URFIREGEHTEEN].

[00:34:05] Lenny Rachitsky

English:

| think this is going to be surprising to a lot of people hearing that you have your own models. When
people talk about Cursor and all the folks in the space, they would kind of call them GPT wrappers,
they're just sitting on top of ChatGPT or Sonnet. What you're saying is that you have your own models,
talk about just the stack behind the scenes.

FRCERIR:

BREZ ARERNEECHNERSRIITT. HA1#%L Cursor FIX MUK EM = RBY, BESIFENA
“GPT E%” (GPT wrappers), 22E7E ChatGPT 5§ Claude Sonnet Z t, MfREIZIRI1E B SHIEE, B
IR ERE AL,

[00:34:21] Michael Truell
English:

Yeah, of course. So we definitely use the biggest foundation models a bunch of different ways, they're
really important components of bringing the Cursor experience to people. The places where we use our
own models, so sometimes it's to survey a use case that a foundation model wouldn't be able to serve at
all for cost or speed reasons. And so one example of that is the autocomplete side of things. And so this
can be a little bit tricky for people who don't code to understand, but code is this weird form of work,
where sometimes, really, the next 5, 10, 20, 30 minutes of your work is entirely predictable from looking

over your shoulder.

And | would contrast this with writing. So writing, lots of people are familiar with Gmail's autocomplete,
and the different forms of autocomplete that show up when you're trying to post text messages, or
emails, or things like that. They can only be so helpful, because often, it's just really not clear what you're
going to be writing just by looking at what you've written before. But in code sometimes, when you edit a
part of a code base, you're going to need to change things, and in other parts of code base, and it's
entirely clear how you're going to need to change things.

So one core part of Cursor is this really suit to autocomplete experience, where you predict the next set of
that you're going to be doing across multiple files, across multiple places within a file. And making
models good at that use case, one, there's a speed component of, those models need to be really fast,
they need to give you a completion within 300 milliseconds. There's also this cost component of, we're
running tons, and tons, and tons of molecules, every keystroke, we need to be changing our prediction
for what you're going to do next. And then it's also this really specialty use case of, you need models that
are really good, not at completing the next token, just a generic tech sequence, but are really good at
autocompleting a series of diffs, looking at what's changed within a code base, and then creating the next
set of things that are going to change, both deleted and added and all of that, and we found a ton of
success in training models specifically for that task.

So that's a place where no foundation models are involved, it's kind of our own thing. We don't have a lot
of labeling or branding about this in the app, power is a very core part of Cursor. And then another set of
places where a user own models are to help things like Sonnet, or Gemini, or GPT, and those sit both on
the inputs of those big models, and on the output. On the input side of things, those models are
searching throughout a code base, try to figure out the parts of a code base to show to one of these big
models. You can kind of think about this as a mini Google search that's specifically built for finding the

relevant parts of the code base to show one of these big models.

And then on the output side of things, we take the sketches of the changes that these models are
suggesting, you make with that code base. And then we have models that then fill in the details of, the
high level thinking is done by the smartest models, they spend a few tokens on doing that, and then
these smaller specialty incredibly fast models, coupled with some inference tricks, then take those high

level changes and turn them actually into full code diffs. And so it's been super helpful for pushing on
quality in places where you need a specialty task, and it's been super helpful for pushing on speed, which
is such an important dimension of product quality for us too.

AR ERIE:

B BATALAERSSEER T REANEMER, SlI@NAFREM Cursor FIRHNEEHME D BEX
LA RNVERECHRE, BEREANTRANEERRE, BhRERATEME,

—MilF= “Boh#h2” (autocomplete) s WFAEHBBIARIGAIAEE R EME, EXBE—HEHHIE
ot BRY, fRETHKS 2 30 DRV LIE, RBE—RIRZARVRIE, M2 TN,

EXMNEERRE, REANE Gmail WERIHE, SHELKBERBEREN. EMNNIERER, EANERXE
FERBRIMZETRES 4. BERBRHR, HIRMERTABEN—H7, BEFTERNMERE MRS, ME
EMpfEe 7 N2 AFH BRI,

FRrEA Cursor BYROER D 2 — L@ X MR HB AR Bapih 2L, e UFIRES XA, ZMIBEREHRTT
H—RFiEMF. BRBEBBRX AL, BA2RE: REALTURIR, 7 300 ZXRL T2, HRZMA:
RER—TRE, RNBBETREAENTN. REE2T Wt REEREFERITN T —MF

(token), REEKIN—RT “RBBER" (diffs) —MBABERETHALN, ARERT—HEREL
AYiR(E, HINENLENIGER S EE T EXM.

FRATEX L 772 B REMRE, TE2E2RAIE AR, KT App BEREAERX—R, EER Cursor
BURZILEN AT, Lhoh, FITIEE —LARE 2 ARHEEN Sonnet. Gemini 2 GPT B9, B FAEELA MR
i, WA, XERMARERMMBEFTER, HHSREXNBIRTAAER, AJUUBEEF—
ZIIAKREREIHETXH “HESTEER .

Fhthin, ARBEGHEINERNSERR, AEHEBEMNFNETUREE (S5 —EHEIEKRT5) RETH
T, BERESENATENRBER. XEFETWESHMAGRAMIER TRE, WIRAMEATERE,
MERENEN KR Z~mREREEENERE,

[00:37:39] Lenny Rachitsky
English:

This is so interesting. | just had Kevin Weil on the podcast, CPO of OpenAl, and he calls this the ensemble
of models, that's the same way-

FROCERIR:

XEERT., ENIFEiHE OpenAl B9 CPO Kevin Weil, fiffzR “WREIER” (ensemble of models), XFR
MNAER—F—

[00:37:46] Michael Truell
English:

Yes.

FSCEIE:

=8

[00:37:46] Lenny Rachitsky

English:

... they work, to use the best feature of each one, and to your point, the cost advantages of using cheaper
models. These other models, are they based on Llama and things like that, just open source models that

you guys plug into and build on?
R EIE:

------ TR Flrr, MASMRENRERE, HFEENRFRAR, FREEERMEMMAMLE. XEH
IEREET Llama ZERME? sLRfRIHIZENFAEICEM 2R RIRE?

[00:38:00] Michael Truell
English:

Yeah. So again, we try to be very pragmatic about the place that we're going to do this work, and we don't
want to reinvent the wheel. And so starting from the very best pre-trained models that exist out there,
often open source ones, sometimes in collaboration with these big model providers that don't share their
weights out into the world, because the thing we care about last is the ability to read line by line, the
matrix of weights that then go to give you a certain output. We just care about the ability to train these
things, to post-train them. And so by and large, yes, open source models, sometimes working with the
closed source providers too to tune things.

FROCERIR:

B, BMNEXAEIFESE, FRENKRIRF. FAUENSMIENRIFNTUINFREF R, BEETR
RE, ARNBSSPERRNANENREREEGF. BARINEFARONMBZITHEIRINEREFRE, KR
CIIEMENIZ (post-train) XERBRIEES], FRUUKE LZERY, EAFRERE, BRtESHRREHEGFHR
TR,

[00:38:42] Lenny Rachitsky
English:

This leads to a discussion that a lot of Al founders always think about and investors, which is moats, and
defensibility in Al. So it feels like one is custom models, is a moat in the space. How do you just think
about long-term defensibility in the space, knowing there's other folks, as you said, launching constantly

trying to eat your lunch?
R EIE:
XEIHT—MRZ Al SIS AR A EMERZHIEH: Al UFH PR (moats) FFEEINYE. BEBEX

RE G EX MU — P, BIAMIRIR, S8 EMAREHEL S mIAER SRIHE, ROAEGX
N TUREI K HR R EE?

[00:39:03] Michael Truell
English:

| think that there are ways to build in inertia and traditional moats, but | think by and large, we're in a
space where it is incumbent on us to continue to try to build the best thing, and everyone in this industry.
And | truly just think that the ceiling is so high that no matter what entrenchment you build, you can be
leapfrogged. And | think that this resembles markets that are maybe a little bit different from normal
software markets, normal enterprise markets of the past. | think one that comes to mind is the market for

search engines at the end of 1999, or at the end of the '90s and beginning of the 2000s. | think another
market that comes to mind that resembles this market in many ways, it's actually just the development of
the peripheral computer and many computers in the '70s, '80s, '90s.

And | think that, yes, in each of those markets, the ceiling was incredibly high, it was possible to swish.
You could keep getting value for the incremental hour of a smart person's time, the incremental R&D
dollar for a really long time, you wouldn't run out of useful things to build. And then in search in
particular, not on the computer case, adding distribution was helpful for making the product better too,
in that you could tune the algorithms, you could tune the learning based off of the data and the feedback
you're getting from users. And | think that all of those dynamics exist in our market too. And so | think
maybe the sad truth for people like us, but then the amazing truth for the world is, | think that there are
many leapfrogs that exist, there's more useful things to build. We're a long way away from where we can
compete in 5, 10 years, and it's incumbent in our state to keep that going.

FRCERIR:

BIANBEENERILBIENERAIPEE, BE200%%E, RITFAAHXNTHEREN] URXMTLBE
TA) BIARERE DT ERFIT M. FEOUNAXMUIHNRERKS T, TIRIREL T T AR T
=, (FEPEAIRERIEHREEH,

HREEXEMT—ESIAHBNRERE LTI RENTGT. FBRIB—PFIF2 1999 FEEL 2000 F4IHY
BR5|EMH, F—MIFZ 700 80. 90 FAMNABRANEENAIL Ro

EXEMmZR, REREBRS. EREK—KEEA, RRANS—/NEERANNE. S§—XTHAEEE, &
RS ENE, IRKEARTEAM. FHEERRM, BMoAXREEEH T~ REREN, FAMR
BILURIE A P BVEEN RIGRIAEE R, RINAFBEREDZEEFEETRNOTGZP. L, HFERENXHF
BIAKG, XAIRER— T ABRMER, EXtURARRNZHFE: FERSIIBENISZ, TEEZSEAN
FAEFEEEE. H1E 5 10 FEHNRFBREERIE, HNRITMRI2FRFIMHAD

[00:40:55] Lenny Rachitsky
English:

So what I'm hearing, this sounds like a lot more like a consumer sort of moat, where it's just, be the best
thing consistently so that people stick with you versus creating lock-in and things like that, where they're
just... Like Salesforce, where it's just contracts with the entire company, and you have to use this product.

AR ERIE:

FRUAFRIA R, XITEREBGE—T “HEER FE0T, BEIHAREREFRLILIAFETER, MAE
& Salesforce BIFEIT SN QBEITERKENE “YHE” (lock-in), IHERFAERX N Mmo

[00:41:10] Michael Truell
English:

Yeah. | think the important thing to note is, if you're in a space where you run out of useful things to do
very quickly, then that's not a great situation to be in. But if you're in a place where big investments, and
having more and more great people working on the right path can keep giving you value, then you can
get these economies of scale of R&D, and you can deeply work on the technology in the right direction,
and get to a place where that is defensible. But yes, it is... | think there's a consumer-like tendency to it,
and | really think it's just about building the best thing possible.

FROCERIR:

Bl WANEEN—RE, NRMAE—NMRRMETETMBITR, RLIRZIRER. EONRMLE—TE
WARMRIEN. 5 RS NEAA EIERER LSRR EMERNTIER, MERFMANMES
PR, RATLIEASE [EMR S RIAMEA, REREI—NEEHEHERML, BHK, eB—TEIERR
i@, ZOFEiTER A RERIFBY™ Mo

[00:41:48] Lenny Rachitsky
English:

Do you think in the future there's one winner in this space, or do you think it's going to be a world of a

number of products like this?
FRERIE:

RAARKZNTRZZE “WMRBZ , ERSFEES TR~ @?

[00:41:53] Michael Truell
English:

| think the market is just so very big. You asked about the IDE thing early on, and one thing that | think a
trip of some people that were thinking about the space is, they looked at the IDE market of the past 10
years, and they said, "Who's making money off of the editors?" It's this super fragmented space where
everyone kind of has their own thing, with their own figuration, and there's one company that actually
makes money off making great editors, but that company is only so big. And then the conclusion was, it
was going to look like that in the future. And | think that the thing that people missed was that there was
only so much you could do building an editor in the 2010s for coders, and the company that made money
off of editors was doing things like making it easy to navigate around a code base, and doing some error
checking and type checking for things, and having good debugging tools.

Which were all very useful, but | think that the set of things you can build for programmers, | think the set
of things you can build for knowledge workers in many different areas just goes very far and very deep.
The problem in front of all of us is the automation of a lot of busy work and knowledge work, and really
changing all the areas of knowledge work in front of us to be much higher level and more productive.

So that was a long-winded way to say, | think the market's really, really big that we're in. | think it's much
bigger than people have realized than the other building tools for developers in the past. And | think that
there will be a bunch of different solutions. | think that there will be one company, to be determined if it's
going to be us, but | do think that there will be one company that builds the general tool that builds
almost all the world's software, and that will be a very, very generationally big business. But | think that
there will be kind of niches you can occupy in doing something for a particular segment of the market, or
for a very particular part of the software development life cycle. But the general programming shifts from
just writing formal programming languages to something way higher level. This is the application you
purchase and use to do that. | think that there will be generally one winner there, and it will be a very big
business.

FROCERIR:

FINAX I TIZIFEEKR. fRZEIRE IDE MR, HREFSHLEREXNITAHANILT —PHEIR: MIINREL
= 108 IDE ™17, AR “EREESEERET? 7 BR—RERREN=ZE, SMABEECHERE,
RE-HKQFHEEMMABHRERRE T, ERRATHOIMEHLIAE. FREANSHEL: KRBZE
XHFo

BREIINAANBEET —R: 72010 £, {REENIERFSIMRIRIESRINEEMAASZ . LRTREMATIMEIZT
ERBESM. HEREE. XEOETNER IR, XEHRER, ERIANNEMFRENEFR (URITFSMN
IR IIEE) MHNEBERZRFZ. HNEANRNERAEEMNTENIIRIIENEK, BRFABERIRT
RUIRAZIESER. EEMAIKF,

FREL, KIERER, BIANRNFILHTZIEBEREXR, EAMTEIRNNINARELAETHEARSTSZ. BASE
REARNBRE R, BIBADTHNFES R, ERIANNREZE-RRA (BEE2HNEEFUE) 15
Bh—M@ERIR, R EIFRENRASRFTEICRLE, BRHE—TEENNARXHNERIS, S8
AmEMRE EVESHRAESRANEIN, MUEHERANERTNARER, RAUEIRZTE—TRRK.

[00:44:10] Lenny Rachitsky
English:

Juicy. Along those lines, it's interesting that Microsoft was actually at the center of this first, with an
amazing product, amazing distribution, Copilot you said was the thing that got you over the hump of,
"Wow, there could be something really big here." And it doesn't feel like they're winning, it feels like
they're falling behind. What do you think happened there?

AR ERIE:

B, IREXNER, ABNEMRERMESEZA TN TR, HEHENTRMRARND %6, R
W7 it Copilot BILREIRE “I, XEXREAAN" BN, EREREMITHLER, RMEEERET. RIA
NEETHA?

[00:44:34] Michael Truell
English:

| think that there are specific historical reasons why Copilot might not have lived up... So far have lived up
to the expectations that some people have for it, and then | think that there are structural reasons. | think
the structural reason is... And to be clear, Microsoft, in the Copilot case, obviously a big inspiration for our
work, and in general, | think they do lots of awesome things, and we're users of many Microsoft products,
but | think that this is a market that's not super friendly to incumbents, in that a market that's friendly to
incumbents might be one where there's only so much to do, it kind of gets commoditized fairly quickly,
and you can bundle that in with other products, and where the ROI between different products is quite
small. And in that case, perhaps it doesn't make sense to buy the innovative solution, it makes sense to
just kind of buy the thing that's bundled in with other stuff.

Another market that might be particularly helpful for incumbents is one where there's... From the get-go,
you have your stuff in one place, and it's really, really excruciatingly hard to switch, and for better or for
worse. | think in our case, you can try out different tools, and you can decide which product you think is
better. And so that's not super friendly to incumbents, and that's more friendly to whoever you think is
going to have the most innovative product. And then the specific historical reasons, as | understand them
are the group of people that worked on the first version of Copilot have, by and large, gone on to do other
things at other places. | think it's been a little hard to coordinate among all the different departments and

parties that might be involved in making something like this.
R EIE:

FiIA7 Copilot B|BRINIERBEARRIRE AT, BBERENHERR, BELEWERRE. SHtREE—
BAERER, HIB Copilot EARFKMNIIFRNEARERIR, MEBIAAMIMET RS T AENER, FiE
EREWN=RHAR, BEXIMHZMIENEX (incumbents) HFA+H &I,

MNEXREFNTEEERLE “BHNEEER" Wy, maRRRMESEENE (commoditized) , fRAETLUE
EMEM~REHHEE, FRFRZENEELDRE (RO) EZREBN. EXWERT, ZCIFHmNMBRAZERTEE
BB, BEREZMGFHImMIT.

S EXRBANNHHERMIDREARE. REEUTENTT, BERNNEF D, RAIUSIHAFRER
IR, FREBN=mEF. XMAFFEX, MAENTFREREFTRHA. ETRENHERE, ERT
fi#, FFRFE—HR Copilot WARBEAKRZELBIMEAFAT, MEAERINXENAATE, MEPEDRILEm
HYERIJANF) 275 FI RER R X,

[00:46:15] Lenny Rachitsky
English:

| want to come back to Cursor. A question | like to ask everyone that's building a tool like this, if you could
sit next to every new user that uses Cursor for the first time, just whisper a couple tips in their ear to be
more successful, most successful with Cursor, what would be 1 or 2 tips?

FROCERIR:

FAAMEE Cursor, HENRE—MIRBUILETAMA—NIE: MRIFELES—NE—REA Cursor BHA
P35, EREBEERVNEN, L&t fER Cursor, ARZEW—MMEI?

[00:46:32] Michael Truell
English:

| think right now, and we'd want to fix this at a product level, a lot of being successful with Cursor is kind
of having a taste for what the models can do, both what complexity of a task they can handle, and how
much you need to specify things to that model, but having a taste for the quality of the model, and where
its gaps exist, and what it can do and what it can't. And right now, we don't do a good job in the product
of educating people around that, and maybe giving people some swim lanes, giving people some
guidelines.

But to develop that taste, would give two tips. So one is, as mentioned before, would bias less toward,
trying in one go to tell the model, "Hey, here's exactly what | want you to do." Then seeing the output,
and then either being disappointed or accepting the entire thing for an entire big task. Instead what |
would do is | would chop things up into bits, and you can spend basically the same amount of time
specifying things overall, but chopped up more. So you're specifying a little bit, you're getting a little bit
of work, you're specifying a little bit, getting a little bit of work, and not doing as much the, "Let's write a
giant thing telling the model exactly what to do." | think that will be a little bit of a recipe for disaster right
Now.

And so biasing toward chopping things up. At the same time, and it might make sense to do this on a side
project and not on your professional work, | would encourage people to, especially developers who are
used to existing workflows for building software, | would encourage people to explicitly try to fall on their
face, and try to discover the limits of what these models can do by being ambitious in a safe environment,
like perhaps a side project, and trying to kind of go around town, use Al to the fullest. Because a lot of the
time, we run into people who haven't given the Al yet a fair shake, and are underestimating its abilities.
So generally biasing towards chopping things up and making things smaller, but to discover the limits of
what you can do there, explicitly just try to go for broke in a safe environment, and get a taste for... You
might be surprised in some of the places where the model doesn't break.

FRCERIR:

AN BRI — AN TBEE~ REERRX N — R EERA Cursor R A—ER D £ FIEF— MR EL g8
By "R ¢ EREREZERMES, MBERERARITAREE, UNENRE. R BRI ATTEEM
ft4. BRI mES SRR AEBIIERELT.

NTEFIMEG, HERIEN: F—, ENZAREIN, FERE—RMESIFEE: 1%, XIMEHBE
MBS , AREWH, BAKE, BA2EER. ARk, MNZEBESTIE, REERALRNEE
B—1FR, BROPET: GP—R, FE—RER;, BiA—x, BRI—RER. FTEE—ARIGILRE
AKRIRE, BEBFNEFERRME,

FRAZM R FIEES. R, HERNAR (LEREMLMEMARERLEF) AABRE, EEREE

“HEET o FAEBEIR T RATERNALE, REMRIELENFE WNATE) fRIGERT
Dy, =ik AIRIRIR. EARZEE, HITBIINALZLE Al — M AFRINE, RETENEES. I, 289K
W, FRBREST), BATRIRKER, BEEREHETRR “ME—H" , XBRE—T—RAIEIIRT
FREER LM S SR E B .

[00:48:45] Lenny Rachitsky
English:

What I'm essentially hearing is build a gut feeling of what the model can do, and how far it can take an
idea versus just kind of guiding it along. And | bet that you need to rebuild this gut every time there's a
new model launch, when it's on... | don't know, 4.0 comes out, you have to do this again. Is that generally
right?

FRCERIR:

FIFEINZOR: BI—MXTEEEMAA. SBIE—TREERETARENER, MANNESIFE. &K
BT, SHUBMEEAMEY (Eb3l GPT-4.0 k), (REMSEMBIIXMEN . KELEXFE?

[00:49:04] Michael Truell
English:

Yes. For the past few years, it hasn't been as big as | think the first experience people have had with some
of these big models. This is also a problem we would hope to solve much better just for users, and take
the burden off of them. But each of these things have slightly different quirks and different personalities.

AR ERIE:

Bl BAIE/LEXMTWEE AMIERIEMARENBARZY, BHENL. XtBERNELEZNAF#E
AREVRER, REMIRRAE, B MERRILEAERHARESMME.

[00:49:26] Lenny Rachitsky
English:

Along these lines, something that people are always debating tools like Cursor, are they more helpful to
junior engineers, or are they more helpful to senior engineers? Do they make senior engineers 10X better?
Do they make junior engineers more like senior engineers? Who do you think benefits most today from

Cursor?

AR ERIE:

IE X MER, AMT—EEFIEHK Cursor IENTER: EfIRMMAIRRMEEER, EENSAIRENES
#E? EfRLEAIRINERE 10 &, TRIUVMEIRIMBEEGSHRIREM? RINASXKIEM Cursor 3k

mR%?

[00:49:43] Michael Truell
English:

| think across the board. Both of these cohorts benefit in big ways. It's a little hard to say on the relative
ranking. | will say, they fall into different anti-patterns. The junior engineers we see going a little too
wholesale, relying on Al for everything, and we're not yet in a place where you can kind of do that end-to-
end on a professional tool, working with tens, hundreds of other people within a long-lived code base.
And then the senior engineers... For many folks, it's not true for all, and we actually often... One of the
ways these tools are adopted is, there's developer experience teams within companies, often those are
staffed by incredibly senior people, because often, those are people who are building tools to make the
rest of the engineers within an organization more productive.

And we've seen some very, very boundary pushing kind of... We've seen people who are on the front lines
of really trying to adopt the technology as much as possible there. But by and large, | would say on
average, as a group, the senior engineers underrate what Al can do for them, and stick to their existing
workflows. And so the relative ranking is a little hard, | think they fall into different anti-patterns, but they
both, by and large, yet get big benefits with these tools.

FROCERIR:

BRUNAB2HUN, XRNBERHREEL, RERERZES, BRIMNSBATEN “RER” (anti-
patterns) . #&ITIZMEEIT TR AI, BHB—IEHRLE, BRNNELAREEZWTAR L. EIMKEL
FARKEARRSEFR LR E B LRIEE,

MmeRkIRM—RAHIEMBA, EEERRT —MINEERET AlAIIBNE, BIFRENIF
Mo A, XETAN—MET SRASBIATN “FLREGEHN" , XEFNBEEBREZREIALR,
EAMIARTERILI2ARTIRMESHNIR, HNEBEERSKLEIDFHA. SHKE, HHIEM
HEXE, RAIRMHERRK. MM IEFRETEAKTE, R2AEIGNIEARE,

[00:51:04] Lenny Rachitsky
English:

That makes absolute sense. | love that it's two ends of the spectrum, expect too much, don't expect
enough. It's like the three bears allegory.

FRSCERIE:
LB, BREVXFLERHINLL: BEASHEERE, MG ‘=20 WE=—,

[00:51:15] Michael Truell
English:

Yeah.

FRCERIR:

=0

[00:51:16] Lenny Rachitsky
English:

Yeah. Okay.

A EIE:

a5

[00:51:18] Michael Truell

English:

Yeah. Maybe the sort of senior, but not staff, right in the middle.
R ERIE:

B, WIFARLFRER %R Staff KANH TI2IMIELFL T8,

[00:51:24] Lenny Rachitsky
English:

Interesting. Okay. Just a couple more questions. What's something that you wish you knew before you
got into this role? If you could go back to Michael at the beginning of Cursor, which was not that long ago,
and you could give him some advice, what's something that you would tell him?

FRZERIE:

Bl 8, REEE/L A, FEEXTMARZE, BTARMAEBCERAMERN? NRIRELE
Cursor MIFF488YRY Michael i1 (HSERZA LA, HAt—ERI, ReSiFtitta?

[00:51:38] Michael Truell
English:

The tough thing with this is, it feels like so much of the hard-won knowledge is tacit, and a bit hard to
communicate verbally. And the sad fact of life feels like for some areas of human endeavor, you kind of do
need to fall on your face to... Either need to fall on your face to learn the correct thing, or you need to be
around someone who's a great example of excellence in the thing. And one area where we have felt this is

hiring. | think that we actually were... So we tried to be incredibly patient on the hiring front.

It was really important to us that, both for personal reasons and also for, | think actually for the
company's strategy, having a world-class group of engineers and researchers to work on Cursor with us
was going to be incredibly important. Also, getting people who fit... A certain mix of intellectual curiosity
and experimentation, because there can be so many new things we need to build. And then also an
intellectual honesty, and maybe micro-pessimism, bluntness, because if all the noise, and... Especially as
the company's grown, and the business has grown, keeping a level head | think is incredibly important
too.

But getting the right group of people into the company was the thing that maybe more than anything
else, apart from building the product, we really, really fussed over. We actually waited a long time to grow

the team because of that. And | think that many people you hear hired too fast, think we actually hired
too slow to begin with. | think it could have been remedied, | think we could have been better at it.

And the method of recruiting that we ended up eventually falling into and working really well for us,
which isn't that novel, of going after people that we think are really world-class, and recruiting them over
the course of, in some cases, many years, ended up working for us in the end, but | don't think we were
very good at it to begin with. And so | think that there were hard-won lessons around both who was the
right profile, who actually made sense in that team, what did greatness look like, and then how to talk
with someone about the opportunity, and get them excited if they really weren't looking for anything.
There were lots of learnings there about how to do that well, and that took us a bit of time.

AR ERIE:

XHEEMMET, REFIHRPVAIREZE TRE" 89, REASERE, £EEF-ITLABRBHNELE, &
REANLEIIE, MAEFEEFRE “ME" ARFIEBNAA, XETFFE/T N SEETERNEL,

BINBMERN— N URZRE, RNEEE L —ERERSRENT O, HEIMFE, TEREFIARR
ERATEES, HE—BHERLNITREMMARAREBFFL Cursor EXEE, HiIFENAZASEFEFOM

EAREEARMSHER, ®RIFLFHLIRILAER,

BRTEFm, AENPNARREINRKRONSER. ABNFTRATT KEN. REARBAXR, BIHIA
NBEANVESIHBEKIET . HREFXAALLEH, HAJUIFELS,
BINRAXRBHIEAIFEERNBEA EZHLHTNE . RS ERLERITANHRENAT, BHNEERTE
NERREERHE. BRFERNAFERI N XTFHAENATEGRERN. FAFHNAEEXTH
PA. EHEIRKMAAE, URINASHBERASERNIBARAILMITEREINE, KR TREFH,

[00:54:12] Lenny Rachitsky
English:

What are some of those learnings for folks that are hiring right now? What's something you missed or
learned?

FRCERIR:
NFIMEEEBENARY, BMLELWAIUNE? (RZAIBETHA, HEFEFRTHA?

[00:54:18] Michael Truell
English:

| think to start with, maybe we actually biased a little bit too much towards looking for people who fit the
archetype of well-known school, very young, had done the things that were high credential in those well-
known school environments. And actually, | think found... Were lucky early on to find fantastic people
who are willing to do this with us who were later careered. | think we should kind of spent a bunch of time
on maybe a little bit the wrong profile to begin with, and part of that was a seniority thing. Part of that
was kind of an interest and experience thing too, we have hired people who are excellent, excellent,
excellent and very young, but they maybe look in some cases slightly different from being straight out of
central casting.

Another lesson is just, we very much evolved our interview loop, and so now, we have a hand-rolled set of

interview questions, and then core our... Core to how we interview too, is actually, we have people onsite

for two days, and do a project with us, a work test project. And that has worked really well, that
increasingly you're finding that. | think how to learn about what people are interested in, and put our best
foot forward, and letting them know about the opportunity when they're really not looking for anything,
and have those conversations. There's definitely been... Gotten better at that over time.

FRCERIR:

HREL, BRMIFPAURERITREIHBH “BREL. FEFRE. TRRTREEISSTEIER B
HE AT, BRfFE, HMNRESHERHLA T —LREEMAZRN. LFRUEEEHOAFAL. &
BHNESHEFRRNAT BER LRET A D E, XBDEEHRD, B0 HEBMNILAEE, 2R
WIRETIREMFHERA, BUIVEERERM ARkEl” HRRE,

S—TEIE, HMNEERTELRE. AEERNE—EFSHERR, MZOFTRILREARAT LM
R, MBEM]—EHE—ITE, B “TENREE" . XBREDBE. I, FIUETRANHES,
FERITKEN SN URIFNESB TN SHHEITHE, MENERHES, RitHSERETT,

[00:55:53] Lenny Rachitsky

English:

Do you have a favorite interview question that you like to ask?
R EE:

REEE RSB EIKR)?

[00:55:56] Michael Truell
English:

| think this two-day work test which we thought would not scale past a few people has had surprising
staying power. And the great thing about it is, it lets someone go end-to-end on it like a real project. It's
not work that we use, it's canned list of projects. But it gives you two days of seeing a real work product,
and it doesn't have to be incredibly time-enhancing other teams from time. You can take the time you
would spend in a half day or one day onsite, and you kind of spread it out over those two days, and give
someone a lot of time to do work on their projects, and so that can actually help it scale.

It helps to enforce, do you want to be around this person type test, because you are around this person
for two days, a bunch of meals with them. We didn't expect that one to stick around, but that has been
really, really important to our value to process, and then also important to getting people excited at,
especially the very early stages of the company. Because before, people are using the product, and know
about it. And when the product is comparatively not very good, really, the only thing you have going for
you is a team of people that some people find special and want to be around. And the two days would
give us a chance to just have this person meet us, and in some cases, hopefully get convinced that they
want to throw in with us. That one was unexpected. Not exactly an interview question, but kind of like a

forward interview.

AR ERIE:

HINNAEBX N NERERR “LaMh” o FNEUAXEL IR KEMTEHETT, BEiHFTHEA
T ETF I EEANGMESLT H —HF iRt mEsS. XAERNEREANIERNR, Me—FR5IT

RHIE, ELRERXNEMREENS~H, MEHASSBEMEANKZIE, RETMIBRAFRI—XK
MWEXNEIDMEIXRRE, LiEkATERRIEELH.

XWEBT#HTT “MEBSEMXNAHRE" 0K, RAMRNEZRALRR, —EZiF/ LR, L&z
PMHTEARB TR, EEHENITHEREEXEE, WRSIATHUEXEE, LHRELQEEH. BAES
mIEEPAE R ELBLAGFREIRS R, (RME—ERSIABME—SIEABMANBEIE. XMRET f&ik
ATHEENONS, BEERREIIIOATEN] ZRTER— 1R, BERE—RERE.

[00:57:29] Lenny Rachitsky
English:

The ultimate interview question. So just to be very clear about what you're describing, you give them an
assignment, like, "Build this feature in our actual code base, work with the team to code it and ship it." Is
that roughly right?

FRCERIR:

KRS, ATHH—T, MERNIRLti]—NMES, bl “ERNBKLRBEREEXTIEE, SH
AEEREHAHE” , KA LEXFT?

[00:57:40] Michael Truell
English:

Yes. So we don't use the IP, not shift end-to-end, but it's like a mock... Very often in our code base, "Here's
a real mini two-day project. You're going to do it end-to-end." Largely being left alone, there's
collaboration too. And then we're a pretty imprisoned company, in almost all cases, it's actually just
sitting in office with us too.

FRCERIR:

B BATAERMIIBAIRSN, WARNAMEESRE, MEERNOLBEFETEREM: “X2—1
HW. NEIRRBHETE, MERIIGMTHRE.” ABONERIRILITE, BEMNE. KB —KRIEER
BETHRNAE, FRULFFRBERT, EEABENRN—BLEDNREE,

[00:58:02] Lenny Rachitsky

English:

And you've been saying that this has scaled to even today, so how big are you guys at this point?
R EIE:

RIRXNRE—HIESE TSK, BRIRENERZK?

[00:58:07] Michael Truell
English:

So we are going on 60 people.
R EE:

BATRE 60 AT

[00:58:10] Lenny Rachitsky

English:

So small for the scale and impact. | was thinking it'd be a lot larger than that.
R EE:

X FIRIIAMEN R, XENRERE. UAASEEXKREZ.

[00:58:15] Michael Truell
English:

Yeah.

FEiE:

=8

[00:58:16] Lenny Rachitsky

English:

And | imagine the largest percent is engineers?
R EiE:

BEABHEIREM?

[00:58:19] Michael Truell
English:

Yeah. To be clear, a big part of the work ahead of us is building a group of people that is bigger, and
awesome, and can continue to make the product better, and the service we give to customers better. And
so you don't plan to stay that small for longer, wouldn't hope so. But part of the reason that that number
is small is, the percentage of engineering and research and design is very high within the company, and
so many software companies when they have roughly 40 engineers would be over 100 people, because
there's lots of operational work, and often, they're very, very sales-led from the get-go, and that's just
quite labor-intensive. And here, we started from a place of being incredibly lean in product-led, and we
now serve lots of our market customers, and it built that out, but there's much more to do there.

FROCERIR:

T, PR, BITREKNEEIFREAR—XEA. EHFNEN, FE#~mMERRS. FRUEKITR
R —EREHIXANBIR, BEABZAUL, REAATARMBIRE. HARMZITHLLFEES. RERHQ
BIONRE 40 N IREM, SAHFAIREEE 100 A, ANBEAENEELE, MEBEMN—FIEMIHERERT,
BIEEFEBEAT. MENBMREREN S~ REELAEE, RBARETHRSRSHHEAHEILTHENE
PR, BEBREZILIFEMR.

[00:59:10] Lenny Rachitsky

English:

A question | wanted to ask you, there's so much happening in Al, there's things launching every... There's
newsletters, many newsletters, whose entire function is to tell you what is happening in Al every single
day. Running a company that's at the center, the white-hot center of this space, how do you stay focused,
and how do you help your team stay focused, and heads down, and just build and not get distracted by all
these shiny things?

FROCERIR:

FRER—PRE: AIURARETRSEE, SREENFAEAXT. BREHZENTIESRMEX Al THEL
ET 4. FA—KRETFXNTERZO. RARCHHEHNATATA, ROFRERFEE? RIOFFEBER
FEd, 1BAET, MARXLREFINRESEIFERS?

[00:59:35] Michael Truell
English:

I think hiring is a big part of it, and if you get people with the right attitude. All of this should be asterisked
in, | think we're doing well there, | think that we'd probably be doing better there too, and it's something
that we should probably talk even more about as a company. But | think that hiring people with the right
disposition, people who are less focused on external validation, more focused on building something
really great, more focused on doing really high quality work, and people who are just generally level-
headed, and maybe the highs aren't very high, the lows aren't very low. | think hiring can get you through
a lot here, and | think that's actually a learning throughout the company, is that for any... You need
process, you need hierarchy, you need lots of things, but for any kind of organizational tool that you're
introducing into a company, the result you're looking to get from that tool also... You can go pretty far on
hiring people with the right behaviors that you want to resolve from that for organizational thing.

And the specific example that comes to mind is, we've been able to get away with not a ton of process yet
on the engineering front, and | think we need a little bit more process, but for our size, not a ton of
process, by hiring people who | think are really excellent. One is hiring people that are level-headed. |
think two is just talking about it a lot. | think three is hopefully leading by example. And for us personally,
we've since 2021, 2022 been professionally working on this, and been working on Al, and we've just seen
a sea change of the comings and goings of various technologies and ideas of... If you're to transport
yourself back to end of 2021, beginning of 2022, this is GPT-3, Instruct GPT doesn't exist, there's no Dolly,
there's no stable diffusion. And then we've gone through all of those image technologies existing,
ChatGPT and that rise, and GPT-4, all of these new models, all these different modalities, all the video
stuff, and only a very small number of these things really kind of affects the business.

So | think we've kind of just built up a little bit of an immune system, and know when an event comes
around that actually is really going to matter for us. This dynamic too of there being lots, and lots, and
lots of chatter, but then maybe only a few things that really matter, I think has been mirrored in Al over
the last decade, where there have been so many papers on deep learning in academia, so many papers
on Al in academia, then the amazing thing is there are really a lot of... A lot the progress of Al can be
attributed to some very simple elegant ideas that have stayed around, and the vast majority of ideas that
have been put out there haven't had staying power, and haven't mattered a ton. And so the dynamic is a
little bit mirrored in the evolution of deep learning as a field overall.

FRCERIR:

BINNBERRA—HRDER, BHEITEEBIA. 3R, X—UHBITITES, HRFRIVHERE, B
FJREE R MBS B HUNNEBBERBABZEINGIAT. ETFTTITEFAT R, ETETEREIFN
A DUIRABLEKRISER. BRI ARBIA. BEERBRARZEH, XRHRNATN—T0E: BRAMREER
2. BRFALTR, BNRMEETASEBITHRIANA, MMETEAEELBEARETR,

— NEANGIFE, EIEAE, RIEfEREAZHRE (RAMBEXRTAERTE—R), EEEBIRE
MFEHAN, HINBEHRET. F—RBABNOA, FEZRE, F=Z2FHEBUSEMN. WEIDAFR,
M 2021, 2022 FRBENIMEWME Al TIE, TIET SMEARFEER RS, O 2021 £k, RE GPT-
3, &% Instruct GPT, ;&% DALL-E, &% Stable Diffusion, ERZH T EGEARIEA. ChatGPT IR
GPT-4. BMIRES. SRER - BEIEZM S RBERDE,

FRIUENRILT —F “RERS , MEFARGERENSEHFIREEEEN, X BRRE, BEENR
A HEE, HEESETER A FAFMZENL: BEHRXTREFINIEX, BEEHRD A #THNEETRE
DEINNER. RHEALFENEEZERNEEL XMESERRIEREF IEA— N TURRBERRHP,

[01:02:33] Lenny Rachitsky
English:

Last question. What do you think people still most misunderstand, or maybe don't fully grasp about
where things are heading with Al in building in the way the world will change?

FROCERIR:

RE— M, RIAAAMIRT AIBREAR. WEAULEFRFNENRE, BrxEBRIRENHRTE
BRI A?

[01:02:46] Michael Truell
English:

People are still a little bit occupied too much, either end of a spectrum of it's all going to happen very fast,
and this is all bluster, and hype, and snake well, and | think we're in the middle of a technology shift
that's going to be incredibly consequential. | think it's going to be more consequential than the internet, |
think it's going to be more consequential than any shift in tech that we've seen since the advent of
computers. And | think it's going to take a while, and | think it's going to be a multi-decade thing, and |
think many different groups will be consequential in pushing it forward.

To get to a world where computers can increasingly do more, and more, and more for us, there's all of
these independent problems that need to be knocked down, and progress needs to be made on them,
and some of those are on the science side of things of getting these models to understand different types
of data, be faster, cheaper, smarter, conform to the modalities that we care about, take actions in the real
world. And then some of it's on how we're going to work with them, and what's the experience that a
human should actually be seeing and controlling on a computer, and working with these things.

But I think it's going to take decades. | think that there's going to be lots of amazing work to do. | think
that also, one of the most... A pattern of a group that | think will be especially important here, not to talk
our own book, but | think is the company that works on automating and augmenting a particular area of
knowledge work, builds both the technology under the surface for that, integrating the best parts from
providers, sometimes doing it in-house, and then also builds the product experience for that. | think
people who do that, and... We're trying to do it in software, people do that in other areas, | think those
folks will be really, really, really consequential. Not just for the end value that users see, but then | think as
they get to scale, they'll be really important for pushing forward the technology, because I think they'll be
able to build... The most successful of them will be able to build very, very big businesses. So, excited to

see the rise of other companies like that in other areas.

AR ERIE:

MNMNABE RITFUETIOENRE: BANN—THBIKESRR, BANAXEEWE. WENRER. &
IARNEAF— 7R ERERRATEZ R, RINNCLLERKMBZMERIZ, tbEITTENREUREK
MNREHEARAZFEERIT, EXFERE, XEE—MKAH+FHNIE, FEFSFENRFHRER
o
ATIEHBNEARNBERESZHNE, BREBUNPNEFTERS T, BEERFREDN: HREERTR
REHIE, TR/ER. BEFEE. BERA, BNHMNXONES, AEINSERPRIRITH. BERRERR
B9 ARRIZMNAEHEN LEEE. TFIHSXERADF.

BIANNZFE/N+F. SERSTAENITEEM. I, TIANN—MEFNEZNERX (R2ATES) 2!
BEHH T AR ERNIR TR AE, ENBBERENRA (BEHNBNRFERBE ML),
NN AR, FATSEERG TR, EMARTMEE MU, XEAFERERIT
B, AMNEBNAFEENE, MERENRT X, MITERAKDRAHTNEENE, HEILERER
RENLSS. FIRHATGFEZIE MU HIEINBI R E.

[01:04:59] Lenny Rachitsky
English:

| know you guys are hiring. For folks that are interested in, "Hey, | want to go work here, and build this
sort of stuff." What kind of roles are you looking for right now? Anyone specifically you're trying... Any

roles you're most excited about filling ASAP? What should people know if they're curious?
R EIE:

FAERETERE, MTFARERMER IR, ZEEBEIE, WEXRFRA" BA, FMNIEEIHMAA
BHHER? BB ARIRFBATBRKA? MRAKENE, Wi THEHFA?

[01:05:12] Michael Truell
English:

There are so many things that this group of people need to do that we are not get equipped to do.
Generic across the board, first of all, and so if you don't think we have a role for something, maybe you
should reach out, that won't actually be the case. And maybe we can actually learn from you, and decide
that we need something that we weren't yet aware of. But by and large, | think that two of the most
important things for us to do this year are have the best product in the space, and then grow it. And we're
kind of in this land grab mode, where almost everyone in the world is either using no tool like ours, or
they're using one that's maybe developing less quickly. So growing Cursor too is a big goal, and | would
say, especially always on the hunt for folks who... Excellent engineers, designers, researchers, but then
folks all across the business side too.

AR ERIE:

BIMNERZBEMHEFR, EENPNAFRTZAB, 8%, HRi12HUBA. NRMAREERITLZEESIRIVER
i, WIFRBAIZERRTA], FLATEEH ML, WIFRTEMIRE EFEIRA, HRIRABNFE—12ZA
RRBENNL. SRR, HMNSEREENRGERE . TERTERENT M, FT AENIMR, RIME
RF—i “BHRN” , HRENFRAEABZAERASILETR, BATA—TABRRIENTR, AU X
Cursor IEMAR— M KBET. BHN—EEFHMBHIRRM. &itil. HxR5, UkISHNEEAT,

[01:06:13] Lenny Rachitsky

English:

| can't help but ask this question now that you talk about engineers, there's this question of just, "Al's
going to write all our code." But everyone's still hiring engineers like crazy. All the foundational models,

so many open roles.
RS ERIE:

BEAAIRE T TA20W, HBAERR: MEE—MER A BRSHNFAENARE" , BEAXKNATRITREE
TiglM. FRENEMREATEMAERAS TR L,

[01:06:28] Michael Truell

English:

Yeah. We're not out there tooting the horn of, people can learn to code.
R EE:

. BB ERILED “AMIFBAFEERBT” .

[01:06:29] Lenny Rachitsky
English:

Do you think there's going to be an inflection point of engineering roles start to slow down? | know this is
a big question, but just... Do you see engineers being more and more needed across all these companies,
or do you think at some point there's all these Cursor agents running building for us?

FRCERIR:

RARSHR— P TREMERFERENEFTRIT? FNEXE—NMEANEE, BRINAZSHKABSEKE
FEIRM, ERRERNHER, IBELHK Cursor BREKTEERATHE—]?

[01:06:45] Michael Truell
English:

Again, we have the view that there's this both long messy middle of it not jumping to a, just you step
back, and you ask for all your stuff to be done, and you have your engineering department. And very
much, you want to evolve from programming as it exists today, we want humans to be in the driver's seat,
and we think even in the end state, that's giving folks control over everything is really important, and you
will need professionals to do that, and decide what the software looks like.

So both | think that, yes, engineers are definitely needed. | think that engineers will be able to do much
more. | think the demand for software is very lasting, which is not the most novel thing, but | think it's
kind of crazy to think about how expensive and labor-intensive it is to build things that are pretty simple
and easy to specify, or it would look like it to the outside observer, and just how hard those things are to

do right now.

All of the stuff that exists right now that's justified by the cost and demand that we have now, if you could
bring that down by [inaudible 01:07:56], | think you would have tons, and tons, and tons of more stuff
that we could do in our computers, tons more tools. And I've felt this, where... One of my early jobs
actually was working for a biotechnology company, and it was building internal tools for them, and the
off-the-shelf tools that existed were horrible, and did not fit their use case at all. And then the internal

tools | was building, there was definitely a ton of demand there for things that could be built, and that far
outstripped just the things that | could build in the time that | was with them.

The physics of working on computers are so great, you should be able to basically just move everything
around, do everything that you want to do. There's still so much friction, | think that there's much more
demand for software than what we can build today with things costing like a blockbuster movie to make
simple productivity software. And so | think long into the future, yes, there will actually be more demand

for engineers.
FRaCERE:

BRI, BITBAANZE—TEKAERTER, FToERRERKE “RMEE—H, TNME<S, TREIIME
RBE—]" BIRE. HMNBEMRBHNREZEIEN, ILAREZEETHN. BITANEERLRS, BT
M= EREEEN, (FREELT L ALTHFIEFEHRERGEIEF T

FREL, 28y, TRRMENEFEN. FHIANNITREMBEEBESHNER. WRHENFEREFAN, XEARZEMN
LHENR, ERRRNENE-CLEERREE. REGEANAARANLEZAREEANT], XHLRK
%

INRBERBFENEMD, FIUNARNEHEN LEENSEE. GRENIAIEMET EAE. HEIYS
Az RREANIEZ BN —XEVRAREDUWERB LR, SHEELNRETREIEEER, T2F88
fAIBER, MBEAMBERBLAENTERERK, TITEH T HHIIEETRESER,

BN ETERNYIEESEIEREE, (RIENAER OISR EMARE. EMEERNNARK, Wi
BBEONEFIRERESFERRA. FIURIANEEZHNRE, HIRMHERLFELEZES,

[01:08:51] Lenny Rachitsky
English:

Is there anything that we didn't cover that you wanted to mention? Any last nugget wisdom you wanted

to leave listeners with? You could also say no, because we've done a lot.
R EIE:

EE AN EMENERBIENNG? REBBLARNRNIEE—RESHE? MMEALREE, BARINEZD
TRZT,

[01:09:00] Michael Truell
English:

We think a lot about how you set up a team to be able to make new stuff, in addition to continuing to
improve the stuff that you have right now. And | think if we were to be successful, IDE is going to have to
change a ton, [inaudible 01:09:18] looks like is going to have to change a ton going into the future. And if
you look around, the companies we respect, there are definitely examples of companies that have
continued to really ride the wave of many leapfrogs, and continue to actually push the frontier. But
they're kind of rare too, it's a hard thing to do. So part of that is just kind of thinking about the thing, and
trying to reflect on it in our good days, and the first principle side of things, part of it's also trying to get in
and study past examples of greatness here, and that's something that we think about a lot too.

AR ERIE:

B2 EBENAAR RS UHI A m, XEEIEEMEYER. FIANMRIKXEMT), IDERY
FSHMARNFFONEAEET, HHMAE, HMNSHBPLEAT R, BHIRE—LEFSMESRBENLRE

M H AR RS, BXREL, WREEHE R, SB2TERREZIYNAR, MNE—MRELR
HITRRE; Z—EDEMRIEIREFARIILA, XBEHNEEBREBRR,

[01:10:00] Lenny Rachitsky
English:

Yeah. Yeah. Before we started recording, you had all these books behind you, and | was like, "What's that
over there?" It's the history of some old computer company that was influential in a lot of ways that I've
never heard of. And I think that says a lot about you of, where a lot of this innovation comes from, is

studying the past, and study history, and what's worked and what hasn't.
R EIE:

. ERNARREN, REIMREFERSZH, HF: “WEAHA? 7 BERRBMRTIRIEERSZS
HERBERZMANERH BN ATNFALE. HRSXRERBIREING: REIMELRETXIEMHE,
RAE, HRTARERE, HARTHH.

[01:10:19] Lenny Rachitsky
English:

Okay. Where can folks find you online if they want to reach out and maybe apply? You said that there may
be roles they may not even be aware of, where do they go find that, and then how can listeners be useful

toyou?
FpERIE:

FH, MRAKBEXRIRHERBRAL, FJUEMERER? FREIETEE —EAKIEEEIRFIAIRKML, ithf]
EMEEER? ARIIENIRIEHT ATEED?

[01:10:28] Michael Truell
English:

Yeah. If folks are interested in working on this stuff, would love to speak, they can find... If they go to
cursor.com, they can kind of both find the product and find out how to reach us.

AR ERIE:

8. MBAREXNEMNEXLEHIAE, RREERM. KKAILUAIE cursor.com, FEABERBLA] LIKEIF~
mm, WATLREIER R BAIB G

[01:10:41] Lenny Rachitsky

English:

Easy. Michael, thank you so much for being here. This was incredible.
R EE:

KT, Michael, IFERFHREER, KRIEREF T -

[01:10:44] Michael Truell
English:

It was wonderful. Thank you.
R EE:

EEmIR. HHTo

[01:10:46] Lenny Rachitsky
English:

Bye, everyone. Thank you so much for listening. If you found this valuable, you can subscribe to the show
on Apple Podcasts, Spotify, or your favorite podcast app... [Closing remarks omitted]

FRZERIE:

B, &, FERGPKIT. WRIMRHEESENE, TILE Apple Podcasts. Spotify S{RERRIER N A EITIH
P g 1 = EEEREE (451BBR)

